1200字范文,内容丰富有趣,写作的好帮手!
1200字范文 > 基于蝗虫(蚱蜢)优化算法优化的支持向量机分类模型及其MATLAB实现-附代码

基于蝗虫(蚱蜢)优化算法优化的支持向量机分类模型及其MATLAB实现-附代码

时间:2024-03-22 23:08:47

相关推荐

基于蝗虫(蚱蜢)优化算法优化的支持向量机分类模型及其MATLAB实现-附代码

基于蝗虫(蚱蜢)优化算法GOA优化的支持向量机分类模型SVM及其MATLAB实现-附代码

文章目录

基于蝗虫(蚱蜢)优化算法GOA优化的支持向量机分类模型SVM及其MATLAB实现-附代码1. 模型与算法描述1.1 蝗虫优化算法原理介绍1.2 支持向量机分类介绍2. 蝗虫优化算法GOA优化支持向量机分类模型的构建过程2.1 优化模型的建立2.2 算法流程3. GOA-SVM数据分类模型的参数设置4. 运行结果5. MATLAB代码与数据下载地址

1. 模型与算法描述

1.1 蝗虫优化算法原理介绍

蝗 虫 优 化 算 法 ( Grasshopper Optimization Algorithm, GOA) 是一种新型的元启发式算法,由 Mirjalili 等人于提出。该算法受幼虫和成年蝗虫大范围移动与寻找食物源的聚集行为启发,具有操作参数少,公式简单的特点。针对基准测试函数优化问题的实验结果表明,GOA的收敛性优于粒子群算法。

1.1.1 蝗虫群的位置移动

Xid=c(∑j=1,j≠iNcubd−lbd2s(∣xjd−xid∣)xj−xidij)+Td(1)X_{i}^{d}=c\left(\sum_{j=1,j \neq i}^{N} c \frac{u b_{d}-l b_{d}}{2} s\left(\left|x_{j}^{d}-x_{i}^{d}\right|\right) \frac{x_{j}-x_{i}}{d_{i j}}\right)+{T}_{d}(1) Xid​=c⎝⎛​j=1,j​=i∑N​c2ubd​−lbd​​s(∣∣​xjd​−xid​∣∣​)dij​xj​−xi​​⎠⎞​+Td​(1)

式中,ddd是表示变量维度,i,ji, ji,j表示蝗虫个体编号,ubd、lbdub_d、lb_dubd​、lbd​分别表示变量的上限与下限,TdT_dTd​表示最优的蝗虫个体位置,dijd_{ij}dij​是两个蝗虫个体之间的欧式距离,c是控制参数,用于平衡算法的全局探索和局部开发。函数s()s( )s()表示两个蝗虫个体之间的交互力影响。

控制参数 ccc 一般设计为线性递减,使得算法具有动态与不确定搜索能力:

c=cmax⁡−tcmax⁡−cmin⁡Tmax⁡(2)c=\mathrm{c}_{\max }-t \frac{\mathrm{c}_{\max }-\mathrm{c}_{\min }}{\mathrm{T}_{\max }}(2) c=cmax​−tTmax​cmax​−cmin​​(2)

式中,cmax、cminc_{max}、c_{min}cmax​、cmin​分别表示递减区间的最大值与最小值,ttt表示当前的迭代次数,TmaxT_{max}Tmax​表示最大迭代次数。

1.1.2 蝗虫个体之间的相互影响

s(r)=fe−rl−e−r(3)s(r)=f \mathrm{e}^{\frac{-r}{l}}-\mathrm{e}^{-r}(3) s(r)=fel−r​−e−r(3)

式中,f、lf、lf、l分别表示吸引强度参数与吸引尺度参数,取0.5和1.5。

s(r)>0s(r)>0s(r)>0时,rrr的取值范围表示吸引区.

s(r)<0s(r)<0s(r)<0时,rrr的取值范围表示排斥区.

s(r)=0s(r)=0s(r)=0时,蝗虫个体之间既不排除也不吸引,rrr的取值范围表示舒适区.

1.1.3 蝗虫优化算法的基本实现步骤

初始化最大迭代次数N,种群大小n,变量范围,控制参数的最大值最小值等参数。初始化种群位置,计算初始的个体适应度,并得到最优蝗虫位置与适应度。开始循环(K=1):使用公式(2)、(3)更新参数。使用公式(1)更新蝗虫个体的位置,并检查是否越界。计算每个蝗虫的适应度,更新到目前为止找到的最优食物源(即最优个体位置与适应度)。重复执行步骤3和4,直到满足最大迭代次数,结束循环(K=N)。返回最优的参数取值和最优的适应度值。

1.2 支持向量机分类介绍

使用台湾林智仁教授开发的libsvm支持向量机库函数,可以进行支持向量机的多分类,并且能简单的设置支持向量机核函数属性,比如线性核函数,多项式核函数,RBF核函数。RBF核函数具有映射范围广、运算快速等特点,使用较为广泛。在libsvm的库函数中,CCC的值为1,σ\sigmaσ默认取1/k,k为总类别数。这两个参数的取值与支持向量机模型学习能力的关系如下图所示:

使用智能优化算法优化支持向量机分类时,大多通过优化惩罚参数CCC与核函数参数σ\sigmaσ来提高分类精度。

2. 蝗虫优化算法GOA优化支持向量机分类模型的构建过程

数据来源:采用意大利红酒数据集进行分类模型的实现。数据集大小为178组样本,每组样本都具有13个特征,3种标签类型。获取的类型一般采用01的索引编码:

使用支持向量机做分类时,不需要通过索引编码的方式,直接获取123等整数类别即可(各种神经网络分类模型需要在程序中通过编码与解码索引,实现较高的分类精度)。

为了方便操作,将特征与整数类型放到EXCEL中,读取代码的命令如下:

%% 读取数据data=xlsread('数据.xlsx','Sheet1','A1:N178'); %使用xlsread函数读取EXCEL中对应范围的数据即可 %输入输出数据input=data(:,1:end-1); %data的第一列-倒数第二列为特征指标output_labels=data(:,end); %data的最后面一列为标签类型

2.1 优化模型的建立

优化惩罚参数c与核参数σ\sigmaσ,目标函数采用五折交叉验证的最佳准确率。目标函数公式如下:

Fitness=nN×100%\text { Fitness }=\frac{n}{N} \times 100 \% Fitness=Nn​×100%

式中,nnn为识别准确的样本统计个数,NNN为识别的样本总数。适应度越大,说明优化模型的识别准确率越高。

2.2 算法流程

3. GOA-SVM数据分类模型的参数设置

GOA算法的参数设置:

% GOA的参数选项初始化goa_option.maxgen = 100; %最大迭代次数goa_option.sizepop = 20;%种群大小goa_option.cbound = [1e-5,1000]; %惩罚参数C的优化范围goa_option.gbound = [1e-5,1000]; %核参数g的优化范围goa_option.v = 5;%交叉验证折数%系数c的变化范围cMax=1;cMin=0.00004;f=0.5;L=1.5; %相互作用力公式的系数常量

GOA优化后的参数赋给SVM:

%% 利用最佳的参数进行SVM网络训练cmd = ['-c ',num2str(bestc),' -g ',num2str(bestg)];model = libsvmtrain(train_output_labels,train_input,cmd);

4. 运行结果

4.1 蝗虫优化算法的适应度曲线和优化后的c、g参数值,交叉验证CV准确率

4.2 蝗虫优化算法优化后的实际类型与识别类型对比图像

从适应度曲线来看,蝗虫优化算法的收敛速度很快,但后期发生聚群行为(可能陷入局部最优)。SVM对红酒数据集的分类准确率一般为97%上下,故起到了优化的效果。

参考文献: [1]Shahrzad, Saremi, Seyedali, et al. Grasshopper Optimisation Algorithm: Theory and application[J]. Advances in Engineering Software, .

5. MATLAB代码与数据下载地址

见博客主页

1.支持向量机SVM分类

2.灰狼优化算法GWO优化支持向量机分类

3.遗传算法GA优化支持向量机分类

4.粒子群算法PSO优化支持向量机分类

5.蝗虫优化算法GOA优化支持向量机分类

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。