1200字范文,内容丰富有趣,写作的好帮手!
1200字范文 > 机器学习的几种方法(knn 逻辑回归 SVM 决策树 随机森林 极限随机树 集成学习 Adaboost GBDT)

机器学习的几种方法(knn 逻辑回归 SVM 决策树 随机森林 极限随机树 集成学习 Adaboost GBDT)

时间:2023-08-07 23:06:47

相关推荐

机器学习的几种方法(knn 逻辑回归 SVM 决策树 随机森林 极限随机树 集成学习 Adaboost GBDT)

一.判别模式与生成模型基础知识

举例:要确定一个瓜是好瓜还是坏瓜,用判别模型的方法是从历史数据中学习到模型,然后通过提取这个瓜的特征来预测出这只瓜是好瓜的概率,是坏瓜的概率。

举例:利用生成模型是根据好瓜的特征首先学习出一个好瓜的模型,然后根据坏瓜的特征学习得到一个坏瓜的模型,然后从需要预测的瓜中提取特征,放到生成好的好瓜的模型中看概率是多少,在放到生产的坏瓜模型中看概率是多少,哪个概率大就预测其为哪个。

举例:

假如你的任务是识别一个语音属于哪种语言。例如对面一个人走过来,和你说了一句话,你需要识别出她说的到底是汉语、英语还是法语等。那么你可以有两种方法达到这个目的:

1.学习每一种语言,你花了大量精力把汉语、英语和法语等都学会了,我指的学会是你知道什么样的语音对应什么样的语言。然后再有人过来对你说,你就可以知道他说的是什么语言.

2.不去学习每一种语言,你只学习这些语言之间的差别,然后再判断(分类)。意思是指我学会了汉语和英语等语言的发音是有差别的,我学会这种差别就好了。

那么第一种方法就是生成方法,第二种方法是判别方法。

生成模型是所有变量的全概率模型,而判别模型是在给定观测变量值前提下目标变量条件概率模型。因此生成模型能够用于模拟(即生成)模型中任意变量的分布情况,而判别模型只能根据观测变量得到目标变量的采样。判别模型不对观测变量的分布建模,因此它不能够表达观测变量与目标变量之间更复杂的关系。因此,生成模型更适用于无监督的任务,如分类和聚类。

条件概率: 就是事件A在事件B发生的条件下发生的概率。条件概率表示为P(A|B),读作“A在B发生的条件下发生的概率”。

贝叶斯公式:

P(X)代表 X 事件发生的概率,也称为先验概率;

P(Y|X)代表在 X 事件发生的前提下,Y 事件发生的概率,也称为似然率;

P(X|Y)代表事件 Y 发生后,X 事件发生的概率,也称为后验概率;

最大似然估计(英语:maximum likelihood estimation,缩写为MLE),是用来估计一个概率模型的参数的一种方法。

条件概率,就是在条件为瓜的颜色是青绿的情况下,瓜是好瓜的概率

先验概率,就是常识、经验、统计学所透露出的“因”的概率,即瓜的颜色是青绿的概率。

后验概率,就是在知道“果”之后,去推测“因”的概率,也就是说,如果已经知道瓜是好瓜,那么瓜的颜色是青绿的概率是多少。后验和先验的关系就需要运用贝叶斯决策理论来求解。

基于条件独立性假设,对于多个属性的后验概率可以写成:

d为属性数目,xi是x在第i个属性上取值。

对于所有的类别来说P(x)相同,基于极大似然的贝叶斯判定准则有朴素贝叶斯的表达式:

朴素贝叶斯算法实现:

#coding:utf-8#P(y|x) = [P(x|y)*P(y)]/P(x)import numpy as npimport pandas as pdclass Naive_Bayes:def __init__(self):pass# 朴素贝叶斯训练过程def nb_fit(self, X, y):# print('===y.columns[0]:', y.columns[0])classes = y[y.columns[0]].unique()# print('==classes:', classes)# print('==y[y.columns[0]]:', y[y.columns[0]])class_count = y[y.columns[0]].value_counts()# print('=class_count:', class_count)# 计算类先验概率class_prior = class_count / len(y)print('==class_prior:', class_prior)# 计算类条件概率prior = dict()#也就是求P(x1=?|y=?)for col in X.columns:for j in classes:# print('y:', y)# print('j:', j)# print('===X[(y == j).values]:', X[(y == j).values])# print('==X[(y == j).values][col]:', X[(y == j).values][col])p_x_y = X[(y == j).values][col].value_counts()# print('==p_x_y:', p_x_y)for i in p_x_y.index:# print('=i:', i)# print('==p_x_y[i]:', p_x_y[i])prior[(col, i, j)] = p_x_y[i] / class_count[j]# print(prior)# assert 1 == 0print('==prior:', prior)return classes, class_prior, prior# 预测新的实例def predict(self, X_test):#argmax(P(x1=?|y=?)*P(y=?))res = []for c in classes:p_y = class_prior[c]p_x_y = 1for i in X_test.items():# print('i:', i)# print(tuple(list(i) + [c]))p_x_y *= prior[tuple(list(i) + [c])]res.append(p_y * p_x_y)# print('===res:', res)return classes[np.argmax(res)]if __name__ == "__main__":x1 = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]x2 = ['S', 'M', 'M', 'S', 'S', 'S', 'M', 'M', 'L', 'L', 'L', 'M', 'M', 'L', 'L']y = [-1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1]df = pd.DataFrame({'x1': x1, 'x2': x2, 'y': y})print('==df:\n', df)X = df[['x1', 'x2']]# print('==X:', X)y = df[['y']]# print('==y:', y)X_test = {'x1': 2, 'x2': 'S'}nb = Naive_Bayes()classes, class_prior, prior = nb.nb_fit(X, y)print('测试数据预测类别为:', nb.predict(X_test))

朴素贝叶斯分类器代码:

朴素贝叶斯分类器采用了“属性条件独立性假设”,对已知类别,假设所有属性相互独立。换言之,假设每个属性独立的对分类结果发生影响相互独立。

采用GaussianNB 高斯朴素贝叶斯,概率密度函数为

import mathclass NaiveBayes:def __init__(self):self.model = None# 数学期望@staticmethoddef mean(X):"""计算均值Param: X : list or np.ndarrayReturn:avg : float"""avg = 0.0# ========= show me your code ==================avg = sum(X) / float(len(X))# ========= show me your code ==================return avg# 标准差(方差)def stdev(self, X):"""计算标准差Param: X : list or np.ndarrayReturn:res : float"""res = 0.0avg = self.mean(X)res = math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))return res# 概率密度函数def gaussian_probability(self, x, mean, stdev):"""根据均值和标注差计算x符号该高斯分布的概率Parameters:----------x : 输入mean : 均值stdev : 标准差Return:res : float, x符合的概率值"""res = 0.0# ========= show me your code ==================exponent = math.exp(-(math.pow(x - mean, 2) /(2 * math.pow(stdev, 2))))res = (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent# ========= show me your code ==================return res# 处理X_traindef summarize(self, train_data):"""计算每个类目下对应数据的均值和标准差Param: train_data : listReturn : [mean, stdev]"""summaries = [0.0, 0.0]# ========= show me your code ==================# for i in zip(*train_data):# print(i)summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]# ========= show me your code ==================return summaries# 分类别求出数学期望和标准差def fit(self, X, y):labels = list(set(y))data = {label: [] for label in labels}for f, label in zip(X, y):data[label].append(f)print('===data:', data)self.model = {label: self.summarize(value) for label, value in data.items()}print(self.model)#得到每一类的每个特征的均值和方差return 'gaussianNB train done!'# 计算概率def calculate_probabilities(self, input_data):"""计算数据在各个高斯分布下的概率Paramter:input_data : 输入数据Return:probabilities : {label : p}"""# summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}# input_data:[1.1, 2.2]probabilities = {}# ========= show me your code ==================for label, value in self.model.items():print('====label, value', label, value)print('==len(value)', len(value))probabilities[label] = 1for i in range(len(value)):mean, stdev = value[i]probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev)print('===probabilities:', probabilities)# ========= show me your code ==================return probabilities# 类别def predict(self, X_test):# {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}label = sorted(self.calculate_probabilities(X_test).items(), key=lambda x: x[-1])[-1][0]return label# 计算得分def score(self, X_test, y_test):right = 0for X, y in zip(X_test, y_test):label = self.predict(X)if label == y:right += 1return right / float(len(X_test))def test_bayes_model():from sklearn.datasets import load_irisimport pandas as pdfrom sklearn.model_selection import train_test_splitiris = load_iris()X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2)print(len(X_train))print(len(y_train))model = NaiveBayes()model.fit(X_train, y_train)print(model.predict([4.4, 3.2, 1.3, 0.2]))if __name__ == '__main__':test_bayes_model()

基于pgmpy的贝叶斯网络例子:

pgmpy是一款基于Python的概率图模型包,主要包括贝叶斯网络和马尔可夫蒙特卡洛等常见概率图模型的实现以及推断方法.

下图是学生获得推荐信质量的例子。具体有向图和概率表如下图所示:

代码:

#coding:utf-8#git clone /pgmpy/pgmpy#cd pgmpy#python setup.py installfrom pgmpy.factors.discrete import TabularCPDfrom pgmpy.models import BayesianModelstudent_model = BayesianModel([('D', 'G'),('I', 'G'),('G', 'L'),('I', 'S')])#分数节点grade_cpd = TabularCPD(variable='G',# 节点名称variable_card=3,# 节点取值个数values=[[0.3, 0.05, 0.9, 0.5],# 该节点的概率表[0.4, 0.25, 0.08, 0.3],[0.3, 0.7, 0.02, 0.2]],evidence=['I', 'D'], # 该节点的依赖节点evidence_card=[2, 2] # 依赖节点的取值个数)#考试难度节点difficulty_cpd = TabularCPD(variable='D',variable_card=2,values=[[0.6, 0.4]])##智商节点intel_cpd = TabularCPD(variable='I',variable_card=2,values=[[0.7, 0.3]])#收到推荐信节点letter_cpd = TabularCPD(variable='L',variable_card=2,values=[[0.1, 0.4, 0.99],[0.9, 0.6, 0.01]],evidence=['G'],evidence_card=[3])#sat分数节点sat_cpd = TabularCPD(variable='S',variable_card=2,values=[[0.95, 0.2],[0.05, 0.8]],evidence=['I'],evidence_card=[2])student_model.add_cpds(grade_cpd,difficulty_cpd,intel_cpd,letter_cpd,sat_cpd)print(student_model.get_cpds())print('D节点路径:', student_model.active_trail_nodes('D'))print('I节点路径:', student_model.active_trail_nodes('I'))print(student_model.local_independencies('G'))# print(student_model.get_independencies())# print(student_model.to_markov_model())# 进行贝叶斯推断from pgmpy.inference import VariableEliminationstudent_infer = VariableElimination(student_model)prob_G = student_infer.query(variables=['G'])print('所有可能性的分数概率prob_G:', prob_G)prob_G = student_infer.query(variables=['G'],evidence={'I': 1, 'D': 0})print('聪明学生的分数概率prob_G', prob_G)# prob_G = student_infer.query(# variables=['G'],# evidence={'I': 0, 'D': 1})# print(prob_G)# # 生成数据# import numpy as np# import pandas as pd## raw_data = np.random.randint(low=0, high=2, size=(1000, 5))# data = pd.DataFrame(raw_data, columns=['D', 'I', 'G', 'L', 'S'])# data.head()### # 定义模型# from pgmpy.models import BayesianModel# from pgmpy.estimators import MaximumLikelihoodEstimator, BayesianEstimator## model = BayesianModel([('D', 'G'), ('I', 'G'), ('I', 'S'), ('G', 'L')])## # 基于极大似然估计进行模型训练# model.fit(data, estimator=MaximumLikelihoodEstimator)# for cpd in model.get_cpds():## 打印条件概率分布#print("CPD of {variable}:".format(variable=cpd.variable))#print(cpd)

二.机器学习

knn的详细链接:/fanzonghao/article/details/86411102

决策树的详细链接:/fanzonghao/article/details/85246720

1.SVM:寻找最优的间隔

等式约束的最优解

不等式约束的最优解:利用kkT条件

最终得到分类器:

也就是C(松弛变量)越大:得到高方差,低偏差的模型;更倾向于过拟合;

C越小:得到低方差,高偏差的模型;更倾向于欠拟合。

推导:

SVM案例,应用SMO算法:

import numpy as npimport pandas as pdfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitimport matplotlib.pyplot as pltdef create_data():iris = load_iris()df = pd.DataFrame(iris.data, columns=iris.feature_names)df['label'] = iris.targetdf.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']data = np.array(df.iloc[:100, [0, 1, -1]])for i in range(len(data)):if data[i, -1] == 0:data[i, -1] = -1# print(data)return data[:, :2], data[:, -1]X, y = create_data()X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)print('==X_train.shape:', X_train.shape)print('==y_train.shape:', y_train.shape)plt.scatter(X[:50, 0], X[:50, 1], label='0', color='R')plt.scatter(X[50:, 0], X[50:, 1], label='1', color='G')plt.legend()# plt.show()#w = alpha*y*xclass SVM:def __init__(self, max_iter=100, kernel='linear'):self.max_iter = max_iterself._kernel = kerneldef init_args(self, features, labels):self.m, self.n = features.shape#m数据量 n特征维度self.X = featuresself.Y = labelsself.b = 0.0# 将Ei保存在一个列表里self.alpha = np.ones(self.m)self.E = [self._E(i) for i in range(self.m)]# 松弛变量self.C = 1.0def _KKT(self, i):y_g = self._g(i) * self.Y[i]if self.alpha[i] == 0:return y_g >= 1elif 0 < self.alpha[i] < self.C:return y_g == 1else:return y_g <= 1# g(x)预测值,输入xi(X[i])def _g(self, i):r = self.bfor j in range(self.m):r += self.alpha[j] * self.Y[j] * self.kernel(self.X[i], self.X[j])return r# E(x)为g(x)对输入x的预测值和y的差def _E(self, i):return self._g(i) - self.Y[i]# 核函数def kernel(self, x1, x2):if self._kernel == 'linear':return sum([x1[k] * x2[k] for k in range(self.n)])elif self._kernel == 'poly':return (sum([x1[k] * x2[k] for k in range(self.n)]) + 1)**2return 0def _init_alpha(self):# 外层循环首先遍历所有满足0<a<C的样本点,检验是否满足KKTindex_list = [i for i in range(self.m) if 0 < self.alpha[i] < self.C]# 否则遍历整个训练集non_satisfy_list = [i for i in range(self.m) if i not in index_list]index_list.extend(non_satisfy_list)for i in index_list:if self._KKT(i):continueE1 = self.E[i]# 如果E2是+,选择最小的;如果E2是负的,选择最大的if E1 >= 0:j = min(range(self.m), key=lambda x: self.E[x])else:j = max(range(self.m), key=lambda x: self.E[x])return i, jdef _compare(self, _alpha, L, H):if _alpha > H:return Helif _alpha < L:return Lelse:return _alphadef fit(self, features, labels):self.init_args(features, labels)for t in range(self.max_iter):# traini1, i2 = self._init_alpha()# 边界if self.Y[i1] == self.Y[i2]:L = max(0, self.alpha[i1] + self.alpha[i2] - self.C)H = min(self.C, self.alpha[i1] + self.alpha[i2])else:L = max(0, self.alpha[i2] - self.alpha[i1])H = min(self.C, self.C + self.alpha[i2] - self.alpha[i1])E1 = self.E[i1]E2 = self.E[i2]# eta=K11+K22-2K12eta = self.kernel(self.X[i1], self.X[i1]) + self.kernel(self.X[i2],self.X[i2]) - 2 * self.kernel(self.X[i1], self.X[i2])if eta <= 0:# print('eta <= 0')continuealpha2_new_unc = self.alpha[i2] + self.Y[i2] * (E1 - E2) / eta #此处有修改,根据书上应该是E1 - E2,书上130-131页alpha2_new = self._compare(alpha2_new_unc, L, H)alpha1_new = self.alpha[i1] + self.Y[i1] * self.Y[i2] * (self.alpha[i2] - alpha2_new)b1_new = -E1 - self.Y[i1] * self.kernel(self.X[i1], self.X[i1]) * (alpha1_new - self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2],self.X[i1]) * (alpha2_new - self.alpha[i2]) + self.bb2_new = -E2 - self.Y[i1] * self.kernel(self.X[i1], self.X[i2]) * (alpha1_new - self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2],self.X[i2]) * (alpha2_new - self.alpha[i2]) + self.bif 0 < alpha1_new < self.C:b_new = b1_newelif 0 < alpha2_new < self.C:b_new = b2_newelse:# 选择中点b_new = (b1_new + b2_new) / 2# 更新参数self.alpha[i1] = alpha1_newself.alpha[i2] = alpha2_newself.b = b_newself.E[i1] = self._E(i1)self.E[i2] = self._E(i2)return 'train done!'def predict(self, data):r = self.bfor i in range(self.m):r += self.alpha[i] * self.Y[i] * self.kernel(data, self.X[i])return 1 if r > 0 else -1def score(self, X_test, y_test):right_count = 0for i in range(len(X_test)):result = self.predict(X_test[i])if result == y_test[i]:right_count += 1return right_count / len(X_test)# def _weight(self):## linear model#yx = self.Y.reshape(-1, 1) * self.X#self.w = np.dot(yx.T, self.alpha)#return self.wsvm = SVM(max_iter=200)svm.fit(X_train, y_train)score = svm.score(X_test, y_test)print('===score:', score)

SVM案例,用于水果数据集分类,调用scikit-learn:

import numpy as npimport matplotlib.pyplot as pltimport pandas as pdimport seaborn as snsfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import accuracy_scorefrom sklearn.svm import SVCimport matplotlib.patches as mpatchesfrom matplotlib.colors import ListedColormapdef plot_class_regions_for_classifier(clf, X, y, X_test=None, y_test=None, title=None,target_names=None, plot_decision_regions=True):"""根据分类器可视化数据分类的结果只能用于二维特征的数据"""num_classes = np.amax(y) + 1color_list_light = ['#FFFFAA', '#EFEFEF', '#AAFFAA', '#AAAAFF']color_list_bold = ['#EEEE00', '#000000', '#00CC00', '#0000CC']cmap_light = ListedColormap(color_list_light[0:num_classes])cmap_bold = ListedColormap(color_list_bold[0:num_classes])h = 0.03k = 0.5x_plot_adjust = 0.1y_plot_adjust = 0.1plot_symbol_size = 50x_min = X[:, 0].min()x_max = X[:, 0].max()y_min = X[:, 1].min()y_max = X[:, 1].max()x2, y2 = np.meshgrid(np.arange(x_min-k, x_max+k, h), np.arange(y_min-k, y_max+k, h))P = clf.predict(np.c_[x2.ravel(), y2.ravel()])P = P.reshape(x2.shape)plt.figure()if plot_decision_regions:plt.contourf(x2, y2, P, cmap=cmap_light, alpha=0.8)plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, s=plot_symbol_size, edgecolor='black')plt.xlim(x_min - x_plot_adjust, x_max + x_plot_adjust)plt.ylim(y_min - y_plot_adjust, y_max + y_plot_adjust)if X_test is not None:plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, s=plot_symbol_size,marker='^', edgecolor='black')train_score = clf.score(X, y)test_score = clf.score(X_test, y_test)title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)if target_names is not None:legend_handles = []for i in range(0, len(target_names)):patch = mpatches.Patch(color=color_list_bold[i], label=target_names[i])legend_handles.append(patch)plt.legend(loc=0, handles=legend_handles)if title is not None:plt.title(title)plt.show()# 加载数据集fruits_df = pd.read_table('fruit_data_with_colors.txt')X = fruits_df[['width', 'height']]y = fruits_df['fruit_label'].copy()# 将不是apple的标签设为0y[y != 1] = 0# 分割数据集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/4, random_state=0)print(y_test.shape)# 不同的C值c_values = [0.0001, 1, 100]for c_value in c_values:# 建立模型svm_model = SVC(C=c_value, kernel='rbf')# 训练模型svm_model.fit(X_train, y_train)# 验证模型y_pred = svm_model.predict(X_test)acc = accuracy_score(y_test, y_pred)print('C={},准确率:{:.3f}'.format(c_value, acc))# 可视化plot_class_regions_for_classifier(svm_model, X_test.values, y_test.values, title='C={}'.format(c_value))

二维高斯分布

将kernel替换成‘linear’

2.集成学习

def load_data():# 加载数据集fruits_df = pd.read_table('fruit_data_with_colors.txt')# print(fruits_df)print('样本个数:', len(fruits_df))# 创建目标标签和名称的字典fruit_name_dict = dict(zip(fruits_df['fruit_label'], fruits_df['fruit_name']))# 划分数据集X = fruits_df[['mass', 'width', 'height', 'color_score']]y = fruits_df['fruit_label']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/4, random_state=0)print('数据集样本数:{},训练集样本数:{},测试集样本数:{}'.format(len(X), len(X_train), len(X_test)))# print(X_train)return X_train, X_test, y_train, y_test#特征归一化def minmax_scaler(X_train,X_test):scaler = MinMaxScaler()X_train_scaled = scaler.fit_transform(X_train)# print(X_train_scaled)#此时scaled得到一个最小最大值,对于test直接transform就行X_test_scaled = scaler.transform(X_test)for i in range(4):print('归一化前,训练数据第{}维特征最大值:{:.3f},最小值:{:.3f}'.format(i + 1,X_train.iloc[:, i].max(),X_train.iloc[:, i].min()))print('归一化后,训练数据第{}维特征最大值:{:.3f},最小值:{:.3f}'.format(i + 1,X_train_scaled[:, i].max(),X_train_scaled[:, i].min()))return X_train_scaled,X_test_scaled

def stack(X_train_scaled, y_train,X_test_scaled, y_test):from sklearn.linear_model import LogisticRegressionfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.svm import SVCfrom mlxtend.classifier import StackingClassifierclf1 = KNeighborsClassifier(n_neighbors=1)clf2 = SVC(kernel='linear')clf3 = DecisionTreeClassifier()lr = LogisticRegression(C=100)sclf = StackingClassifier(classifiers=[clf1, clf2, clf3],meta_classifier=lr)clf1.fit(X_train_scaled, y_train)clf2.fit(X_train_scaled, y_train)clf3.fit(X_train_scaled, y_train)sclf.fit(X_train_scaled, y_train)print('kNN测试集准确率:{:.3f}'.format(clf1.score(X_test_scaled, y_test)))print('SVM测试集准确率:{:.3f}'.format(clf2.score(X_test_scaled, y_test)))print('DT测试集准确率:{:.3f}'.format(clf3.score(X_test_scaled, y_test)))print('Stacking测试集准确率:{:.3f}'.format(sclf.score(X_test_scaled, y_test)))

if __name__ == '__main__':X_train, X_test, y_train, y_test=load_data()X_train_scaled,X_test_scaled=minmax_scaler(X_train,X_test)

2.1Boosting

Boosting(提升)方法从某个基学习器出发,反复学习,得到一系列基学习器,然后组合它们构成一个强学习器。Boosting 基于串行策略:基学习器之间存在依赖关系,新的学习器需要依据旧的学习器生成。代表算法/模型:提升方法 AdaBoost提升树梯度提升树 GBDT

2.1.1Adaboost

2.1.2 GBDT

def gbdt(X_train_scaled, y_train, X_test_scaled, y_test):from sklearn.ensemble import GradientBoostingClassifierfrom sklearn.model_selection import GridSearchCVparameters = {'learning_rate': [0.001, 0.01, 0.1, 1, 10, 100]}clf = GridSearchCV(GradientBoostingClassifier(), parameters, cv=3, scoring='accuracy')clf.fit(X_train_scaled, y_train)print('最优参数:', clf.best_params_)print('验证集最高得分:', clf.best_score_)print('测试集准确率:{:.3f}'.format(clf.score(X_test_scaled, y_test)))

2.2 Bagging

Bagging 基于并行策略:基学习器之间不存在依赖关系,可同时生成。代表算法/模型: 随机森林神经网络的Dropout策略

import warningsimport matplotlib.pyplot as pltfrom sklearn.datasets import make_circlesfrom sklearn.model_selection import train_test_splitfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.linear_model import LogisticRegressionfrom sklearn.svm import SVCfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.ensemble import VotingClassifier,RandomForestClassifier,ExtraTreesClassifierfrom sklearn.ensemble import AdaBoostClassifierwarnings.filterwarnings('ignore')X,y=make_circles(n_samples=300,noise=0.15,factor=0.5,random_state=233)plt.scatter(X[y==0,0],X[y==0,1])plt.scatter(X[y== 1, 0], X[y== 1, 1])# plt.show()X_train,X_test,y_train,y_test=train_test_split(X,y)print('X_train.shape=',X_train.shape)print('X_test.shape=',X_test.shape)print(y_test)print('===========knn==============')knn_clf=KNeighborsClassifier()knn_clf.fit(X_train,y_train)print('knn accuracy={}'.format(knn_clf.score(X_test,y_test)))print('\n')print('===========logistic regression==============')log_clf = LogisticRegression()log_clf.fit(X_train, y_train)print('logistic regression accuracy={}'.format(log_clf.score(X_test, y_test)))print('\n')print('===========SVM==============')svm_clf = SVC()svm_clf.fit(X_train, y_train)print('SVM accuracy={}'.format(svm_clf.score(X_test, y_test)))print('\n')print('===========Decison tree==============')dt_clf = DecisionTreeClassifier()dt_clf.fit(X_train, y_train)print('Decison tree accuracy={}'.format(dt_clf.score(X_test, y_test)))print('\n')print('===========ensemble classfier==============')voting_clf=VotingClassifier(estimators=[('knn',KNeighborsClassifier()),('logistic', LogisticRegression()),('SVM',SVC()),('decision tree',DecisionTreeClassifier())],voting='hard')#严格遵守少数服从多数voting_clf.fit(X_train,y_train)print('voting classfier accuracy={}'.format(voting_clf.score(X_test, y_test)))print('\n')print('===========random forest==============')rf_clf=RandomForestClassifier(n_estimators=500,#500棵树max_depth=6,#每颗树的深度bootstrap=True,# 放回抽样oob_score=True,#使用没有被抽到的数据做验证)rf_clf.fit(X,y)#由于oob_score为true 故直接fit整个训练集print('rf accuracy={}'.format(rf_clf.oob_score_))print('\n')print('===========extreme random tree==============')ex_clf=ExtraTreesClassifier(n_estimators=500,max_depth=6,bootstrap=True,oob_score=True)ex_clf.fit(X,y)print('extreme random treeaccuracy={}'.format(ex_clf.oob_score_))print('\n')print('===========Adaboost classifier==============')ada_clf = AdaBoostClassifier(DecisionTreeClassifier(),n_estimators=500,learning_rate=0.3)ada_clf.fit(X_train, y_train)print('Adaboost accuracy={}'.format(ada_clf.score(X_test,y_test)))print('\n')

随机森林算法的高明之处之一就是利用随机性,使得模型更鲁棒。假如森林中有 N 棵树,那么就随机取出 N 个训练数据集,对 N 棵树分别进行训练,通过统计每棵树的预测结果来得出随机森林的预测结果。

因为随机森林的主要构件是决策树,所以随机森林的超参数很多与决策树相同。除此之外,有2个比较重要的超参数值得注意,一个是 bootstrap,取 true 和 false,表示在划分训练数据集时是否采用放回取样;另一个是oob_score,因为采用放回取样时,构建完整的随机森林之后会有大约 33% 的数据没有被取到过,所以当 oob_score 取 True 时,就不必再将数据集划分为训练集和测试集了,直接取未使用过的数据来验证模型的准确率。

由上述可以看出Extremely Randomized Trees 算法精度最高,它不仅在构建数据子集时对样本的选择进行随机抽取,而且还会对样本的特征进行随机抽取(即在建树模型时,采用部分特征而不是全部特征进行训练)。换句话说,就是对于特征集 X,随机森林只是在行上随机,Extremely Randomized Trees是在行和列上都随机。

Boosting/Bagging 与 偏差/方差 的关系

简单来说,Boosting能提升弱分类器性能的原因是降低了偏差Bagging则是降低了方差Boosting方法: Boosting 的基本思路就是在不断减小模型的训练误差(拟合残差或者加大错类的权重),加强模型的学习能力,从而减小偏差;但 Boosting 不会显著降低方差,因为其训练过程中各基学习器是强相关的,缺少独立性。Bagging方法: 对n独立不相关的模型预测结果取平均,方差是原来的1/n;假设所有基分类器出错的概率是独立的,超过半数基分类器出错的概率会随着基分类器的数量增加而下降。泛化误差、偏差、方差、过拟合、欠拟合、模型复杂度(模型容量)的关系图:

参考:

/zonghaofan/team-learning/blob/master/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E5%9F%BA%E7%A1%80/Task2%20bayes_plus.ipynb

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。