1200字范文,内容丰富有趣,写作的好帮手!
1200字范文 > 实数不搞公理化 谈何超实数?

实数不搞公理化 谈何超实数?

时间:2021-07-21 14:30:17

相关推荐

实数不搞公理化 谈何超实数?

实数不搞公理化,谈何超实数?

坦率地说,国人认为,实数就是‘实实在在’的数,用不着搞公理化,拿来就可以直接使用(use)。

但是,你使用的实数是哪一种(套)“实数”?因为实数的实际构造方式有很多种。因此,塔尔斯基认为实数不搞公理化就会“乱套”。

严格地说,目前国人使用“国产”实数就是“乱套”

注:实数不搞公理化,谈何超实数?这是不言自明的事情。请见本文附件米塔尔关于实数系统的公理组

袁萌 陈启清 7月22。日

附件:

Tarski's axiomatization of the reals

In 1936, Alfred Tarski set out an axiomatization of the real numbers and their arithmetic, consisting of only the 8 axioms shown below and a mere four primitive notions: the set of reals denoted R, a binary total order over R, denoted by infix <, a binary operation of addition over R, denoted by infix +, and the constant 1.

The literature occasionally mentions this axiomatization but never goes into detail, not with standing its economy and elegant metamathematical properties. This axiomatization appears little known, possibly because of its second-order nature. Tarski's axiomatization can be seen as a version of the more usual definition of real numbers as the unique Dedekind-complete ordered field; it is however made much more concise by using unorthodox variants of standard algebraic axioms and other subtle tricks (see e.g. axioms 4 and 5, which combine together the usual four axioms of abelian groups).

The term "Tarski's axiomatization of real numbers" also refers to the theory of real closed fields, which Tarski showed completely axiomatizes the first-order theory of the structure 〈R, +, ·, <〉.

The axioms

Axioms of order (primitives: R, <):

Axiom 1

If x < y, then not y < x. That is, "<" is an asymmetric relation.

Axiom 2

If x < z, there exists a y such that x < y and y < z. In other words, "<" is dense in R.

Axiom 3

"<" is Dedekind-complete. More formally, for all X, Y ⊆ R, if for all x ∈ X and y ∈ Y, x < y, then there exists a z such that for all x ∈ X and y ∈ Y, if z ≠ x and z ≠ y, then x < z and z < y.

To clarify the above statement somewhat, let X ⊆ R and Y ⊆ R. We now define two common English verbs in a particular way that suits our purpose:

X precedes Y if and only if for every x ∈ X and every y ∈ Y, x < y.

The real number z separates X and Y if and only if for every x ∈ X with x ≠ z and every y ∈ Y with y ≠ z, x < z and z < y.

Axiom 3 can then be stated as:

"If a set of reals precedes another set of reals, then there exists at least one real number separating the two sets."

Axioms of addition (primitives: R, <, +):

Axiom 4

x + (y + z) = (x + z) + y.

Axiom 5

For all x, y, there exists a z such that x + z = y.

Axiom 6

If x + y < z + w, then x < z or y < w.

Axioms for one (primitives: R, <, +, 1):

Axiom 7

1 ∈ R.

Axiom 8

1 < 1 + 1.

These axioms imply that R is a linearly ordered abelian group under addition with distinguished element 1. R is also Dedekind-complete and divisible.

Tarski stated, without proof, that these axioms gave a total ordering. The missing component was supplied in by Stefanie Ucsnay.[2]

This axiomatization does not give rise to a first-order theory, because the formal statement of axiom 3 includes two universal quantifiers over all possible subsets of R. Tarski proved these 8 axioms and 4 primitive notions independent.

How these axioms imply a field

Tarski sketched the (nontrivial) proof of how these axioms and primitives imply the existence of a binary operation called multiplication and having the expected properties, so that R is a complete ordered field under addition and multiplication. This proof builds crucially on the integers with addition being an abelian group and has its origins in Eudoxus' definition of magnitude.

References

^ Tarski, Alfred (24 March 1994). Introduction to Logic and to the Methodology of Deductive Sciences (4 ed.). Oxford University Press. ISBN 978-0-19-504472-0.

^ Ucsnay, Stefanie (Jan ). "A Note on Tarski's Note". The American Mathematical Monthly. 115 (1): 66–68. JSTOR 27642393.

hide

vte

Real numbers

0.999...Absolute differenceCantor setCantor–Dedekind axiomCompletenessConstructionDecidability of first-order theoriesExtended real number l

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。
相关阅读
超实数是“数”吗?

超实数是“数”吗?

2023-09-25

关于超实数的寿命

关于超实数的寿命

2021-02-07

超实数的单子结构

超实数的单子结构

2024-01-04

超实数的演算

超实数的演算

2024-08-17