1200字范文,内容丰富有趣,写作的好帮手!
1200字范文 > 数字信号处理(DSP)实验——IIR数字滤波器设计与仿真

数字信号处理(DSP)实验——IIR数字滤波器设计与仿真

时间:2019-05-23 23:50:12

相关推荐

数字信号处理(DSP)实验——IIR数字滤波器设计与仿真

一、实验目的

(1)熟悉IIR数字滤波器的原理与方法;

(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

二、实验原理与方法

设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标; ②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求读者调用如上函数直接设计IIR数字滤波器。调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

三、实验内容及步骤

1.调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图3.1所示。由图可见,三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。

2. 要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。

提示:抑制载波单频调幅信号的数学表示式为

其中,cos(2πfct)称为载波,fc为载波频率,cos(2πf0t)称为单频调制信号,f0为调制正弦波信号频率,且满足fc>f0。由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频fc+f0和差频fc-f0,这2个频率成分关于载波频率fc对称。所以,1路抑制载波单频调幅信号的频谱图是关于载波频率fc对称的2根谱线,其中没有载频成分,故取名为抑制载波单频调幅信号。容易看出,图5.1中三路调幅信号的载波频率分别为250Hz、500Hz、1000Hz。如果调制信号m(t)具有带限连续频谱,无直流成分,则s(t)=m(t)cos(2πfct)就是一般的抑制载波调幅信号。其频谱图是关于载波频率fc对称的2个边带(上下边带),在专业课通信原理中称为双边带抑制载波 (DSB-SC) 调幅信号,简称双边带 (DSB) 信号。如果调制信号m(t)有直流成分,则s(t)=m(t)cos(2πfct)就是一般的双边带调幅信号。其频谱图是关于载波频率fc对称的2个边带(上下边带),并包含载频成分。

3. 编程序调用MATLAB滤波器设计函数ellipord和ellip分别设计这三个椭圆滤波器,并绘图显示其幅频响应特性曲线。

4. 调用滤波器实现函数filter,用三个滤波器分别对信号产生函数mstg产生的信号st进行滤波,分离出st中的三路不同载波频率的调幅信号y1(n)、y2(n)和y3(n), 并绘图显示y1(n)、y2(n)和y3(n)的时域波形,观察分离效果。

5. 信号产生函数mstg清单

function st=mstg%产生信号序列向量st,并显示st的时域波形和频谱%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600N=1600 %N为信号st的长度。Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;fc1=Fs/10;%第1路调幅信号的载波频率fc1=1000Hz,fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hzfc2=Fs/20;%第2路调幅信号的载波频率fc2=500Hzfm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hzfc3=Fs/40;%第3路调幅信号的载波频率fc3=250Hz,fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hzxt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号st=xt1+xt2+xt3; %三路调幅信号相加fxt=fft(st,N);%计算信号st的频谱%====以下为绘图部分,绘制st的时域波形和幅频特性曲线====================subplot(3,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')subplot(3,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱')axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')

6.实验程序框图如图3.2所示。

四、思考题

1.请阅读信号产生函数mstg,确定三路调幅信号的载波频率和调制信号频率。

2.信号产生函数mstg中采样点数N=800,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg中采样点数N的值,观察频谱图验证您的判断是否正确。

【因为信号st是周期序列,谱分析时要求观察时间为整数倍周期。所以,本题的一般解答方法是,先确定信号st的周期,在判断所给采样点数N对应的观察时间Tp=NT是否为st的整数个周期。但信号产生函数mstg产生的信号st共有6个频率成分,求其周期比较麻烦,故采用下面的方法解答。

分析发现,st的每个频率成分都是25Hz的整数倍。采样频率Fs=10kHz=25×400Hz,即在25Hz的正弦波的1个周期中采样400点。所以,当N为400的整数倍时一定为st的整数个周期。因此,采样点数N=800和N=2000时,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,不是400的整数倍,不能得到6根理想谱线。】

3.修改信号产生函数mstg,给每路调幅信号加入载波成分,产生调幅(AM)信号,重复本实验,观察AM信号与抑制载波调幅信号的时域波形及其频谱的差别。

提示:AM信号表示式:

五、滤波器参数及实验程序清单

1、滤波器参数选取

观察图3.1可知,三路调幅信号的载波频率分别为250Hz、500Hz、1000Hz。带宽(也可以由信号产生函数mstg清单看出)分别为50Hz、100Hz、200Hz。所以,分离混合信号st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的指标参数选取如下:

说明:

(1)为了使滤波器阶数尽可能低,每个滤波器的边界频率选择原则是尽量使滤波器过渡带宽尽可能宽。

(2)与信号产生函数mstg相同,采样频率Fs=10kHz。

(3)为了滤波器阶数最低,选用椭圆滤波器。

按照图3.2 所示的程序框图编写的实验程序为exp3.m。

2、实验程序清单

% 实验程序exp3.m% IIR数字滤波器设计及软件实现clear all;close allFs=10000;T=1/Fs; %采样频率%调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st st=mstg;%低通滤波器设计与实现=========================================fp=280;fs=450;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp[B,A]=ellip(N,rp,rs,wp);%调用ellip计算椭圆带通DF系统函数系数向量B和Ay1t=filter(B,A,st); %滤波器软件实现% 低通滤波器设计与实现绘图部分figure(2);subplot(3,1,1);myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线yt='y_1(t)';subplot(3,1,2);tplot(y1t,T,yt); %调用绘图函数tplot绘制滤波器输出波形%带通滤波器设计与实现===========================================fpl=440;fpu=560;fsl=275;fsu=900;wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60; [N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和Ay2t=filter(B,A,st);%滤波器软件实现% 带通滤波器设计与实现绘图部分figure(3);subplot(3,1,1);myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线yt='y_2(t)';subplot(3,1,2);tplot(y2t,T,yt);%高通滤波器设计与实现================================================fp=890;fs=600;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF指标(高通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp[B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip计算椭圆带通DF系统函数系数向量B和Ay3t=filter(B,A,st);%滤波器软件实现% 高低通滤波器设计与实现绘图部分figure(4);subplot(3,1,1)myplot(B,A) %调用绘图函数myplot绘制损耗函数曲线y3t=filter(B,A,st);yt='y_3(t)';subplot(3,1,2);tplot(y3t,T,yt);

% tplot函数function tplot(xn,T,yn)%时域序列连续曲线绘图函数% xn:信号数据序列,yn:绘图信号的纵坐标名称(字符串)% T为采样间隔n=0:length(xn)-1;t=n*T;plot(t,xn);xlabel('t/s');ylabel(yn);axis([0,t(end),min(xn),1.2*max(xn)])

% myplot函数function myplot(B,A)%myplot(B,A)%时域离散系统损耗函数绘图%B为系统函数分子多项式系数向量%A为系统函数分母多项式系数向量[H,W]=freqz(B,A,1000);m=abs(H);plot(W/pi,20*log10(m/max(m)));grid on;xlabel('\omega/\pi');ylabel('幅度(dB)')axis([0,1,-80,5]);title('损耗函数曲线');

六、实验程序运行结果

程序exp3.m运行结果如图3.2所示。由图可见,三个分离滤波器指标参数选取正确,算耗函数曲线达到所给指标。分离出的三路信号y1(n),y2(n)和y3(n)的波形是抑制载波的单频调幅波。

低通滤波器损耗函数及调幅信号y1(t)

带通滤波器损耗函数及调幅信号y2(t)

高通滤波器损耗函数及调幅信号y3(t)

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。