1200字范文,内容丰富有趣,写作的好帮手!
1200字范文 > 已知函数f(x)=lnx-x+1 x∈(0 +∞).(1)求f(x)的单调区间和极值;(2)设a≥

已知函数f(x)=lnx-x+1 x∈(0 +∞).(1)求f(x)的单调区间和极值;(2)设a≥

时间:2022-02-26 08:00:41

相关推荐

已知函数f(x)=lnx-x+1 x∈(0 +∞).(1)求f(x)的单调区间和极值;(2)设a≥

问题补充:

已知函数f(x)=lnx-x+1,x∈(0,+∞).

(1)求f(x)的单调区间和极值;

(2)设a≥1,函数g(x)=x2-3ax+2a2-5,若对于任意x0∈(0,1),总存在x1∈(0,1),使得f(x1)=g(x0)成立,求a的取值范围;

(3)对任意x∈(0,+∞),求证:.

答案:

解:(1)∵函数f(x)=lnx-x+1,x∈(0,+∞),∴f′(x)=令其为0可得x=1,

并且当x∈(0,1)时,f′(x)>0,函数f(x)单调递增,

当x∈(1,+∞)时,f′(x)<0,函数f(x)单调递减,

故f(x)在x=1处取到极大值f(1)=0

(2)由(1)知,当x1∈(0,1)时,f′(x)>0,函数f(x)单调递增,

故f(x1)<f(1)=0,

因为a≥1,函数g(x)=x2-3ax+2a2-5,为开口向上的抛物线,对称轴为x=

故函数g(x)在区间(0,1)上为减函数,故g(1)<g(x0)<g(0),

即g(x0)<2a2-5,

要使对于任意x0∈(0,1),总存在x1∈(0,1),使得f(x1)=g(x0)成立,

只需2a2-5<0即可,解得

(3)由(1)可知f(x)在x=1处取到极大值f(1)=0,也是最大值,

故f(x)≤f(1)=0,即lnx-x+1≤0,即lnx≤x-1,当x=1时取等号,

可证,又,故

构造函数F(x)=,则F′(x)==>0

即函数F(x)在x∈(0,+∞)上单调递增,当x趋向于正无穷大时,F(x)趋向于0,

故F(x)<0,即,

故有

解析分析:(1)求函数的导数,即可得到函数的单调区间和极值;(2)分别求出两个函数的取值范围,要使对于任意x0∈(0,1),总存在x1∈(0,1),使得f(x1)=g(x0)成立,只需2a2-5<0即可;(3)结合(1)的结论可证后半部分,再利用构造函数的方式证明前半部分,可得

已知函数f(x)=lnx-x+1 x∈(0 +∞).(1)求f(x)的单调区间和极值;(2)设a≥1 函数g(x)=x2-3ax+2a2-5 若对于任意x0∈(0 1

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。