1200字范文,内容丰富有趣,写作的好帮手!
1200字范文 > 塔尔斯基关于实数的8条公理(原文)

塔尔斯基关于实数的8条公理(原文)

时间:2019-08-29 01:55:10

相关推荐

塔尔斯基关于实数的8条公理(原文)

塔尔斯基关于实数的8条公理(原文)

当前,国内高等数学教科书普遍不讲实数系的公理组,是一个“空白”。

为此,我们于2月7日将塔尔斯基关于实数的公理

系统放飞互联网,填充这项空白。

现在,我们再次转发塔尔斯基关于实数的8条公理(原文)供读者参阅。

请见本文附件。

袁萌 陈启清 7月21日

附件:

Tarski's axiomatization of the realsIn 1936, Alfred Tarski set out an axiomatization of the real numbers and their arithmetic, consisting of only the 8 axioms shown below and a mere four primitive notions: the set of reals denoted R, a binary total order over R, denoted by infix <, a binary operation of addition over R, denoted by infix +, and the constant 1.

The literature occasionally mentions this axiomatization but never goes into detail, notwithstanding its economy and elegant metamathematical properties. This axiomatization appears little known, possibly because of its second-order nature. Tarski's axiomatization can be seen as a version of the more usual definition of real numbers as the unique Dedekind-complete ordered field; it is however made much more concise by using unorthodox variants of standard algebraic axioms and other subtle tricks (see e.g. axioms 4 and 5, which combine together the usual four axioms of Abelian groups).

The term "Tarski's axiomatization of real numbers" also refers to the theory of real-closed fields, which Tarski showed completely axiomatizes the first-order theory of the structure 〈R, +, ·, <〉.

The axioms

"Axioms of order" (primitives: R, <):

;

Axiom 1 :"<" is an asymmetric relation.

;

Axiom 2 :If "x" < "z", there exists a "y" such that "x" < "y" and "y" < "z". In other words, "<" is dense in R.

;

Axiom 3 :"<" is Dedekind-complete. More formally, for all "X", "Y" ⊆ R, if for all "x" ∈ "X" and "y" ∈ "Y", "x" < "y", then there exists a "z" such that for all "x" ∈ "X" and "y" ∈ "Y", "x" ≤ "z" and "z" ≤ "y". Here, "u" ≤ "v" is a shorthand for "u" < "v" or "u" = "v".

To clarify the above statement somewhat, let "X" ⊆ R and "Y" ⊆ R. We now define two common English verbs in a particular way that suits our purpose:

:"X precedes Y" if and only if for every "x" &isin; "X" and every "y" &isin; "Y", "x" < "y".

:The real number "z separates" "X" and "Y" if and only if for every "x" &isin; "X" with "x" &ne; "z" and every "y" &isin; "Y" with "y" &ne; "z", "x" < "z" and "z" < "y".

Axiom 3 can then be stated as:

:"If a set of reals precedes another set of reals, then there exists at least one real number separating the two sets."

"Axioms of addition" (primitives: R, <, +):

;

Axiom 4 :"x" + ("y" + "z") = ("x" + "z") + "y".

;

Axiom 5 :For all "x", "y", there exists a "z" such that "x" + "z" = "y".

;

Axiom 6 :If "x" + "y" < "z" + "w", then "x" < "z" or "y" < "w".

"Axioms for one" (primitives: R, <, +, 1):

;

Axiom 7 :1 ∈ R.

;

Axiom 8 :1 < 1 + 1.

These axioms imply that R is a linearly ordered Abelian group under addition with distinguished element 1. R is also Dedekind-complete and divisible.

These axioms require but three existential quantifiers, one for each of axioms 2, 3, and 5. This axiomatization does not give rise to a first-order theory, because the formal statement of axiom 3 includes two universal quantifiers over all possible subsets of R. Tarski proved these 8 axioms and 4 primitive notions independent.

How these axioms imply a field

Tarski sketched the (nontrivial) proof of how these axioms and primitives imply the existence of a binary operation called multiplication and having the expected properties, so that R is a complete ordered field under addition and multiplication. This proof builds crucially on addition being an abelian group over the integers and has its origins in Eudoxus' definition of magnitude.

A recent elegant derivation of this result, due to [/pdf/math/0405454.pdf Arthan,] [/pdf/math/0301015.pdf A'Campo,] and [http://www.maths.mq.edu.au/~street/reals.pdf Ross Street,] can be sketched as follows. An "almost homomorphism" is a map "f":Z→Z such that {"f"("n+m")-"f"("m")-"f"("n"): "n,m"∈Z} is finite. Two almost homomorphisms "f,g" are "almost equal" if {"f"("n")-"g"("n"): "n"∈Z} is finite. This defines an equivalence relation on the set of almost homomorphisms, and the equivalence classes of that relation are simply the real numbers. The sum and product of two real numbers defined in this manner are simply the pointwise sum and composition, respectively, of the corresponding almost homomorphisms. Thus R is a complete ordered field with respect to "<" and the binary operations of addition and multiplication.

References

* Alfred Tarski, 1994 (1936). "Introduction to Logic and to the Methodology of Deductive Sciences". Dover.

Wikimedia Foundation. .

Upper Highway Area

Ken Craggs

Яндекс.Директ

Топ лучших сайтов знакомств ™

Топ-5 сайтов знакомств. Реальные анкеты. Элитные знакомства. Более 50 000 оценок. Жми!

Look at other dictionaries:

Alfred Tarski — Infobox scientist name = Alfred Tarski caption = birth date = birth date|1901|01|14 birth place = Warsaw, Poland (under Russian rule at the time) death date = death date|1983|10|26 death place = Berkeley, California fields = Mathematics, logic,… … Wikipedia

Real number — For the real numbers used in descriptive set theory, see Baire space (set theory). For the computing datatype, see Floating point number. A symbol of the set of real numbers …

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。